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Copyright Notice

Copyright © (1987-2004) by the GAP Group,

incorporating the Copyright (© 1999, 2000 by School of Mathematical and Computational Sciences, Univer-
sity of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland

being the Copyright (© 1992 by Lehrstuhl D fiir Mathematik, RWTH, 52056 Aachen, Germany, transferred
to St Andrews on July 21st, 1997.

except for files in the distribution, which have an explicit different copyright statement. In particular, the
copyright of packages distributed with GAP is usually with the package authors or their institutions.

GAP is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version. For details, see the file GPL in the etc directory of the GAP distribution or see

http://www.gnu.org/licenses/gpl.html

If you obtain GAP please send us a short notice to that effect, e.g., an e-mail message to the address
support@gap-system.org, containing your full name and address. This allows us to keep track of the
number of GAP users.

If you publish a mathematical result that was partly obtained using GAP, please cite GAP, just as you would
cite another paper that you used (see below for sample citation). Also we would appreciate if you could
inform us about such a paper.

Specifically, please refer to

[GAP] The GAP Group, GAP --- Groups, Algorithms, and Programming,
Version 4.4.12; 2014
(http://www.gap-system.org)

GAP is distributed by us without any warranty, to the extent permitted by applicable state law. We distribute
GAP as is without warranty of any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose.

The entire risk as to the quality and performance of the program is with you. Should GAP prove defective,
you assume the cost of all necessary servicing, repair or correction.

In no case unless required by applicable law will we, and/or any other party who may modify and redistribute
GAP as permitted above, be liable to you for damages, including lost profits, lost monies or other special,
incidental or consequential damages arising out of the use or inability to use GAP.

You are permitted to modify and redistribute GAP, but you are not allowed to restrict further redistribution.
That is to say proprietary modifications will not be allowed. We want all versions of GAP to remain free.

If you modify any part of GAP and redistribute it, you must supply a README document. This should
specify what modifications you made in which files. We do not want to take credit or be blamed for your
modifications.

Of course we are interested in all of your modifications. In particular we would like to see bug-fixes, improve-
ments and new functions. So again we would appreciate it if you would inform us about all modifications
you make.



About the New
Features Manual

This is a supplementary volume to the four main parts of the GAP documentation: the GAP Reference
Manual, which describes all the main features of GAP for users, the GAP Tutorial, a beginner’s introduction
to GAP, Programming in GAP and Extending GAP, which provide information for those who want to
write their own GAP extensions.

This manual, New Features for Developers, describes certain features of GAP, which meet the following
conditions:

e They are new. Usually they were introduced at the last major release of GAP

e They are likely to be of more interest to GAP programmers and package developers than to interactive
users

e We wish to retain the freedom to make some changes in them at the time of the next release

We would encourage users to employ these features in their own GAP programs or packages, but ask them
to let us know that they are doing so. We will then invite feedback from them, and, as we approach the
next release, discuss with them any changes to the features that might be desirable for inclusion in the next
release. Unless substantial problems are found, we would normally expect to move the documentation into
the reference manual at that time, and regard the documented behaviour as fixed from that time onwards.
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Dictionaries and
General Hash
Tables (preliminary

People and computers spend a large amount of time with searching. Dictionaries are an abstract data
structure which facilitates searching for certain objects. An important way of implementing dictionaries is
via hash tables.

The functions and operations described in this chapter have been added very recently and
are still undergoing development. It is conceivable that names of variants of the functionality
might change in future versions. If you plan to use these functions in your own code, please
contact us.

2.1 Dictionaries
IsDictionary( obj ) C

A dictionary is a growable collection of objects that permits to add objects (with associated values) and to
check whether an object is already known.

IsLookupDictionary( obj ) C

A lookup dictionary is a dictionary, which permits not only to check whether an object is contained, but
also to retrieve associated values, using the operation LookupDictionary.

KnowsDictionary( dict, key ) Q)

checks, whether key is known to the dictionary dict, and returns true or false accordingly. key must be
an object of the kind for which the dictionary was specified, otherwise the results are unpredictable.

LookupDictionary( dict, key ) 0]

looks up key in the lookup dictionary dict and returns the associated value. If key is not known to the
dictionary, fail is returned.

There are several ways how dictionaries are implemented: As lists, as sorted lists, as hash tables or via binary
lists. A user however will just have to call NewDictionary and obtain a “suitable” dictionary for the kind
of objects she wants to create. It is possible however to create hash tables (see 2.3) and dictionaries using
binary lists (see 2.1.6).

NewDictionary( obj, look[, objcolll ) F

creates a new dictionary for objects such as obj. If objcoll is given the dictionary will be for objects only
from this collection, knowing this can improve the performance. If objcoll is given, obj may be replaced by
false, i.e. no sample object is needed.

The function tries to find the right kind of dictionary for the basic dictionary functions to be quick. If look
is true, the dictionary will be a lookup dictionary, otherwise it is an ordinary dictionary.
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10 Chapter 2. Dictionaries and General Hash Tables (preliminary)

The use of two objects, 0obj and objcoll to parametrize the objects a dictionary is able to store might look
confusing. However there are situations where either of them might be needed:

The first situation is that of objects, for which no formal “collection object” has been defined. A typical
example here might be subspaces of a vector space. GAP does not formally define a “Grassmannian” or
anything else to represent the multitude of all subspaces. So it is only possible to give the dictionary a
“sample object”.

The other situation is that of an object which might represent quite varied domains. The permutation
(1,10%) might be the nontrivial element of a cyclic group of order 2, it might be a representative of Sjgs. In
the first situation the best approach might be just to have two entries for the two possible objects, in the
second situation a much more elaborate approach might be needed.

An algorithm that creates a dictionary will usually know a priori, from what domain all the objects will be,
giving this domain permits to use a more efficient dictionary.

This is particularly true for vectors. From a single vector one cannot decide whether a calculation will take
place over the smallest field containing all its entries or over a larger field.

As there are situations where the approach via binary lists is explicitly desired, such dictionaries can be
created deliberately.

DictionaryByPosition( list, lookup ) F

creates a new (lookup) dictionary which uses PositionCanonical in list for indexing. The dictionary will
have an entry dict!.blist which is a bit list corresponding to list indicating the known If look is true, the
dictionary will be a lookup dictionary, otherwise it is an ordinary dictionary.

2.2 General Hash Tables

This chapter describes hash tables for general objects. We hash by keys and also store a value. Keys cannot
be removed from the table, but the corresponding value can be changed. Fast access to last hash index allows
you to efficiently store more than one array of values — this facility should be used with care.

This code works for any kind of object, provided you have a DenseIntKey or KeyIntSparse method to convert
the key into a positive integer. These methods should ideally be implemented efficiently in the core.

Note that, for efficiency, it is currently impossible to create a hash table with non-positive integers.

2.3 General hash table definitions and operations

IsHash( obj ) C
The category of hash tables for arbitrary objects (provided an IntKey function is defined).
PrintHashWithNames( hash, keyName, valueName ) O
Print a hash table with the given names for the keys and values.

GetHashEntry( hash, key ) O

If the key is in hash, return the corresponding value. Otherwise return fail. Note that it is not a good idea
to use fail as a value.

AddHashEntry( hash, key, value ) O
Add the key and value to the hash table.

RandomHashKey ( hash ) Q)
Return a random Key from the hash table (Random returns a random value).

HashKeyEnumerator( hash ) 0

Enumerates the keys of the hash table (Enumerator enumerates values).
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Section 6. Sparse hash tables 11

2.4 Hash keys

The crucial step of hashing is to transform key objects into integers such that equal objects produce the
same integer.

TableHasIntKeyFun( hash ) p
If this filter is set, the hash table has an IntKey function in its component hash!.intKeyFun.

The actual function used will vary very much on the type of objects. However GAP provides already key
functions for some commonly encountered objects.

DenseIntKey( objcoll, obj ) O

returns a function that can be used as hash key function for objects such as obj in the collection objcoll.
objcoll typically will be a large domain. If the domain is not available, it can be given as false in which
case the hash key function will be determined only based on obj. (For a further discussion of these two
arguments see NewDictionary, section 2.1.5).

The function returned by DenseIntKey is guaranteed to give different values for different objects. If no
suitable hash key function has been predefined, fail is returned.

SparseIntKey( objcoll, obj ) 0]

returns a function that can be used as hash key function for objects such as 0bj in the collection objcoll. In
contrast to DenseIntKey, the function returned may return the same key value for different objects. If no
suitable hash key function has been predefined, fail is returned.

2.5 Dense hash tables

Dense hash tables are used for hashing dense sets without collisions, in particular integers. Stores keys as an
unordered list and values as an array with holes. The position of a value is given by the attribute IntKeyFun
or the function returned by DenseIntKey, and so KeyIntDense must be one-to-one.

DenseHashTable( ) F

Construct an empty dense hash table. This is the only correct way to construct such a table.

2.6 Sparse hash tables

Sparse hash tables are used for hashing sparse sets. Stores keys as an array with fail denoting an empty
position, stores values as an array with holes. Uses HashFunct applied to the IntKeyFun (respectively the
result of calling SparseIntKey) of the key. DefaultHashLength is the default starting hash table length; the
table is doubled when it becomes half full.

SparseHashTable( [intkeyfun] ) F

Construct an empty sparse hash table. This is the only correct way to construct such a table. If the argument
intkeyfun is given, this function will be used to obtain numbers for the keys passed to it.

GetHashEntryIndex( hash, key ) F
If the key is in hash, return its index in the hash array.
DoubleHashArraySize( hash ) F

Double the size of the hash array and rehash all the entries. This will also happen automatically when the
hash array is half full.

In sparse hash tables, the integer obtained from the hash key is then transformed to an index position, this
transformation is done using the hash function HashFunct:

HashFunct( key, i, size ) F

This will be a good double hashing function for any reasonable KeyInt (see Cormen, Leiserson and Rivest,
Introduction to Algorithms, le, p. 235).
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12 Chapter 2. Dictionaries and General Hash Tables (preliminary)

2.7 Fast access to last hash index

These functions allow you to use the index of last hash access or modification. Note that this is global
across all hash tables. If you want to have two hash tables with identical layouts, the following works:
GetHashEntry( hashTablel, object ); GetHashEntryAtLastIndex( hashTable2 ); These functions should be
used with extreme care, as they bypass most of the inbuilt error checking for hash tables.

GetHashEntryAtLastIndex( hash ) 0]
Returns the value of the last hash entry accessed.

SetHashEntryAtLastIndex( hash, newValue ) O
Resets the value of the last hash entry accessed.

SetHashEntry( hash, key, wvalue ) O

Resets the value corresponding to key.
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Quotient groups
by homomorphisms
preliminary)

Given a group homomorphism, the cosets of its kernel correspond to elements in the image. Our hom coset
representation stores the homomorphism and the element in the source group. The image is an attribute
which is computed as necessary. Two cosets are equal if their images are the same. Where ever practical a
coset is identified with its image. For example, if the homomorphism maps into a permutation group, the
cosets are considered to be permutations. Since cosets can be multiplied, we can use them to form a quotient
group. Any computation in this quotient group will be “shadowed” in the source group.

The functions and operations described in this chapter have been added very recently and
are still undergoing development. It is conceivable that names of variants of the functionality
might change in future versions. If you plan to use these functions in your own code, please
contact us.

IsHomCoset ( obj ) C

IsHomCoset has one category for each kind of image (and corresponding representations).

IsHomCosetToPerm( obj ) C
IsHomCosetToPermRep( obj ) R
IsHomCosetToMatrix( obj ) C

gdc - We need HomCosetToMatrix to be in same family as Matrix, so that GAP allows vector % for Hom-
CosetToMatrix and other algorithms that take elements of the HomCosetToMatrix. Unfortunately, I don’t
know how to set the family correctly for compatibility.

IsHomCosetToMatrixRep( obj ) R
IsHomCosetToFp( o0bj ) C
IsHomCosetToFpRep( obj ) R
IsHomCosetToTuple( obj ) C
IsHomCosetToTupleRep( obj ) R
IsHomCosetToAdditiveElt( obj ) C
Here the image is an ADDITIVE group of matrices.

IsHomCosetToAdditiveEltRep( obj ) R

IsHomCosetToObjectRep( obj )

The generic representation.
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14 Chapter 3. Quotient groups by homomorphisms (preliminary)

It also has one property for each kind of source.

IsHomCosetOfPerm( obj ) P
IsHomCosetOfMatrix( obj ) P
IsHomCosetOfFp( obj ) P
IsHomCosetOfTuple( obj ) P
IsHomCosetOfAdditiveElt( obj ) P
3.1 Creating hom cosets and quotient groups

HomCoset ( hom, elt ) F
Creates a hom coset. It is better to use one of the QuotientGroupBy. .. functions.

HomCosetWithImage( hom, srcElt, imgElt ) F
Creates a hom coset with given homomorphism hom, source element srcElt and image element imgFElt. It is
better to use one of the QuotientGroupBy. .. functions.

QuotientGroupHom( hom ) A

The quotient group associated with the homomorphism hom. It is better to use one of the Quotient-
GroupBy. .. functions.

QuotientGroupByHomomorphism( hom ) F
The quotient group associated with the homomorphism hom.
QuotientGroupByImages( srcGroup, rangeGroup, srcGens, imgGens ) F

creates a quotient group from the homomorphism which takes maps srcGens[i] in sreGroup to imgGens [i]
in rangeGroup.

QuotientGroupByImagesNC( srcGroup, rangeGroup, srcGens, imgGens ) F

Same as QuotientGroupByImages (see 3.1.5) but without checking that the homomorphism makes sense.

3.2 Operations on hom cosets

Homomorphism( hcoset ) Q)
Homomorphism( @ ) 0]

The homomorphism of a hom coset hcoset, respectively a hom quotient group Q.

SourceElt ( hcoset ) O
The source element of a hom coset hcoset.

ImageElt ( hcoset ) A
The image element of a hom coset hcoset.

CanonicalElt( hcoset ) A

A canonical element of a hom coset hcoset. Note that SourceElt may be different for non-identical equal
cosets. CanonicalElt gives the same element for different representation of a coset. This will compute a
chain for the range group if one does not already exist.



Section 2. Operations on hom cosets

5» Source( Q )

Source group of a hom quotient group Q.

6» Range( @ )

Range group of a hom quotient group Q.

7» ImagesSource( @ )

Image group of a hom quotient group Q.

15
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Transversals of
subgroups (preliminary

This chapter describes the category of transversals of subgroups. This category has the following rep-
resentations: TransvBySchreierTree, TransvByHomomorphism, TransvByDirProd, TransvByTrivSubgrp,
TransvBySiftFunct.

The functions and operations described in this chapter have been added very recently and
are still undergoing development. It is conceivable that names of variants of the functionality
might change in future versions. If you plan to use these functions in your own code, please
contact us.

4.1 General operations on transversals

Every kind of transversal has the following common operations/attributes: Size, Enumerator, Iterator,
Random, TransversalElt, SiftOnelLevel.

TransversalElt( ss, elt ) O

for a transversal ss and group element elt, returns the representative of the coset containing the element
elt. The representative is unique, i.e. TransversalElt will return the same thing for different elements of
the same coset.

SiftOneLevel( ss, g ) O

For a transversal ss and group element g, the following relationship with TransversalElt (see 4.1.1) defines
SiftOneLevel:

SiftOneLevel(ss, g) = g * TransversalElt(ss, g¢)

For some kinds of transversal TransversalElt is more efficient, for others SiftOneLevel is.

4.2 Transversals by Schreier tree

For transversals of stabiliser subgroups, we store a Schreier tree to allow us to find transversal elements.
Note: SiftOneLevel is more efficient that TransversalElt.

Transversals can be extended as more generators are found for the stabiliser. Orbit generators are generators
for the original group, stored separately so we can add extra generators to form a shallower tree. Orbits are
stored as hash tables.

SchreierTransversal( basePoint, Action, strongGens ) F

creates a transversal by Schreier tree for the subgroup stabilising the point basePoint (an object, typically
an integer or vector) inside the group generated by strongGens (a list of strong generators for the group).
This is the only correct way to create a transversal by Schreier tree.

OrbitGenerators( ss ) @)

The elements used to compute the orbit ss. These will be generators for the larger group, however there will
often be redundancies to keep the Schreier tree shallow.
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Section 3. Transversals by homomorphic images 17

OrbitGeneratorsInv( ss ) O
Inverses of the orbit generators of the orbit ss.

BasePointOfSchreierTransversal( ss ) O
The base point of transversal by Schreier tree ss, i.e. the point stabilised.

One( ss ) A
The identity of group ss.

ExtendSchreierTransversal( st, newGens ) F
ExtendSchreierTransversal( st, newGens, newGenslnv ) F

Extend a transversal by Schreier tree st with new generators newGens.

ExtendSchreierTransversalShortCube( ss, newGens ) F
ExtendSchreierTransversalShortCube( ss, newGens, newGenslnv ) F

gdc - Ideally, ExtendSchreierTransversal should be a field of the Schreier tree, chosen by Schreier-
Transversal().

gdc - This is the new function with the cube control tree.

EXPERIMENTAL IDEA: IT WOULD NEED TO BE TUNED. NOT CURRENTLY COMPETITIVE
WITH METHOD BELOW.

ExtendSchreierTransversalShortTree( ss, newGens ) F
ExtendSchreierTransversalShortTree( ss, newGens, newGenslnv ) F

gdc - This is the original function with the traditional control tree

BASED ON: [CF94] “A Random Base Change Algorithm for Permutation Groups”, G. Cooperman and
L. Finkelstein, J. of Symbolic Computation 17, 1994, pp. 513-528

CompleteSchreierTransversal( ss ) F

Complete the transversal. In order to ensure that the Schreier tree does not become too deep, the Extend. . .
functions do not complete the transversal. Rather they extend it by depth one.

PreferredGenerators( ss ) A

returns the preferred generators of the transversal by Schreier tree ss. The preferred generators are always
used first when computing the Schreier tree.

SchreierTreeDepth( ss ) F
The depth of Schreier tree ss.

4.3 Transversals by homomorphic images

For the transversal of the kernel of a homomorphism, a quotient group for the kernel of a homomorphism
is stored. Transversal elements are computed by finding a chain for the image group and doing shadowed

stripping.
Note: TransversalElt is more efficient that SiftOneLevel.

HomTransversal( h ) F
creates a hom transversal for the homomorphism h.
Homomorphism( homtr ) Q)

The homomorphism of hom transversal homtr.
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18 Chapter 4. Transversals of subgroups (preliminary)

QuotientGroup( homtr ) A
The quotient group of hom transversal homir.
ImageGroup( homtr ) 0]

The image group of hom transversal homtr.

4.4 Transversals by direct products

Stores projection and injection for a direct product. The chain subgroup is the kernel of the projection.
Projection( dpt ) 0]
The projection of the direct product transversal dpt.

Injection( dpt ) 0]

The injection of a direct product transversal dpt.

4.5 Transversals by Trivial subgroups

For use when our group is small enough to enumerate.
TransversalByTrivial( G ) F

returns a transversal by trivial subgroup for the group G.

4.6 Transversals by sift functions

Given a group, subgroup, and sift function from group to subgroup that is constant on cosets, this defines a
transversal. One typically prefers a normalized sift function that is the the identity map on subgroups. For
situations when there is a non-group theoretic method for computing the transversal element, e.g. using row
reduction for the stabiliser of an invariant subspace.

Note: SiftOneLevel is more efficient than TransversalElt.
TransversalBySiftFunction( supergroup, subgroup, sift ) F

returns a transversal by sift function.
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Chains of subgroups
preliminary)

The functions and operations described in this chapter have been added very recently and
are still undergoing development. It is conceivable that names of variants of the functionality
might change in future versions. If you plan to use these functions in your own code, please
contact us.

Data structures for storing general group chains. Note that this does not replace StabChain. The group
attribute ChainSubgroup(G) stores the next group down in the chain (i.e. the structure is recursive). Chain-
Subgroup((G) should have an attribute Transversal which describes a transversal of ChainSubgroup(G)
in G, as in gptransv. [gd,gi].

The command ChainSubgroup will use the default method for computing chains — currently this is random
Schreier-Sims, unless the group is nilpotent. Warning: This algorithm is Monte-Carlo. ChainSubgroup is
mutable, since it may start as the trivial subgroup, and then grow as elements are sifted in, and some stick.
This allows us to do, if we want, things like:

SetChainSubgroup (G, ClosureGroup(ChainSubgroup(G), siftee) );

Whether this code is used instead of previous methods is determined by 4 variables which control the
behaviour of the filter IsChainTypeGroup. See the file gap.../lib/grpchain.gd for details.

IsChainTypeGroup( G ) P

returns true if the group G is “chain type”, i.e. it is the kind of group where computations are best done
with chains.

ChainSubgroup( G ) AM

Computes the chain, if necessary, and returns the next subgroup in the chain. The current default is to use
the random Schreier-Sims algorithm, unless the group is known to be nilpotent, in which case MakeHomChain
is used.

Transversal( G ) A
The transversal of the group G in the previous subgroup of the chain.

IsInChain( G ) O
A group G is in a chain if it has either a ChainSubgroup or a Transversal.

GeneratingSetIsComplete( G ) P

returns true if the generating set of the group G is complete. For example, for a stabiliser subgroup this is
true if our strong generators have been verified.

SiftOnelLevel( G, g ) O
Sift g though one level of the chain.

Sift( G, g ) 0]
Sift g through the entire chain.
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Size0fChain0fGroup( G ) F

Uses the chain to compute the size of a group. Unlike Size (G), this does not set the Size attribute, which
is useful if the chain is not known to be complete.

TransversalOfChainSubgroup( G ) F
Returns the transversal of the next group in the chain, inside G.

ChainStatistics( G ) F
Returns a record containing useful statistics about the chain of G.

HasChainHomomorphicImage( G ) F

Does G have a chain subgroup derived from a homomorphic image? This will be false for stabiliser, trivial,
and sift function chain subgroups. It will be true for homomorphism and direct product chain subgroups.

ChainHomomorphicImage( G ) F

Returns the chain homomorphic image, or fail if no such image exists.

5.1 Stabiliser chain subgroups
BaseOfGroup( G ) A

If the group G has a chain consisting entirely of stabiliser subgroups, then this command returns the base
as a list. This command does not compute a base, however.

ExtendedGroup( G, ¢ ) O
Add a new Schreier generator for G.

StrongGens( G ) F
Returns a list of generating sets for each level of the chain.

ChainSubgroupByStabiliser( G, basePoint, Action ) F

Form a chain subgroup by stabilising basePoint under the given action. The subgroup will start with no
generators, and will have a transversal by Schreier tree.

OrbitGenerators0fGroup( G ) A
Generators used to compute the orbit of G. Used by baseim. [gd,gi].

RandomSchreierSims( G ) F
The random Schreier-Sims algorithm.

ChangedBaseGroup( G ) F

We assume we have a chain for G, which gives a complete BSGS. We are given a new base newBase and wish
to find strong generators for it. Options are the same as for random Schreier-Sims. Note that this function
does not modify G, but returns a new group, isomorphic to G with the specified base.
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5.2 Hom coset chain subgroups
ChainSubgroupByHomomorphism( hom ) F

Form a chain subgroup by the kernel of hom. The subgroup will start with no generators, and will have a
hom transversal.

ChainSubgroupByProjectionFunction( G, kernelSubgp, imgSubgp, projFnc ) F

When the homomorphism of a quotient group is a projection, then there is an internal semidirect product,
for which TransversalElt () has a direct implementation as the projection. hom will be the projection, and
elt -> ImageElm(hom, elt) is the map.

QuotientGroupByChainHomomorphicImage( quol, quo2] ) F
This function deals with quotient groups of quotient groups in a chain.

ChainSubgroupQuotient( G ) A
The quotient by the chain subgroup.

MakeHomChain( G ) O

Computes a chain of subgroups for the group G which are kernels of homomorphisms. Currently only
implemented for nilpotent groups. We use the algorithm of E. Luks, Computing in Solvable Matrix Groups,
FOCS/STOC.

5.3 Direct product chain subgroups

ChainSubgroupByDirectProduct( proj, inj ) F
Form a chain subgroup by internal direct product.

ChainSubgroupByPSubgroup0fAbelian( G, p ) F
G is an abelian group, p a prime involved in G. Form a direct sum chain where the subgroup is the p-prime

part of G.

5.4 Trivial chain subgroups and sift function chain subgroups
ChainSubgroupByTrivialSubgroup( G ) F
Form a chain subgroup by enumerating the group.

ChainSubgroupBySiftFunction( G, subgroup, siftFnc ) F

Form a chain subgroup using a sift function.
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